Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Adv Sci (Weinh) ; : e2203499, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2074901

ABSTRACT

Outbreaks of coronaviruses (CoVs), especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have posed serious threats to humans and animals, which urgently calls for effective broad-spectrum antivirals. RNA-dependent RNA polymerase (RdRp) plays an essential role in viral RNA synthesis and is an ideal pan-coronaviral therapeutic target. Herein, based on cryo-electron microscopy and biochemical approaches, gossypol (GOS) is identified from 881 natural products to directly block SARS-CoV-2 RdRp, thus inhibiting SARS-CoV-2 replication in both cellular and mouse infection models. GOS also acts as a potent inhibitor against the SARS-CoV-2 variant of concern (VOC) and exerts same inhibitory effects toward mutated RdRps of VOCs as the RdRp of the original SARS-CoV-2. Moreover, that the RdRp inhibitor GOS has broad-spectrum anti-coronavirus activity against alphacoronaviruses (porcine epidemic diarrhea virus and swine acute diarrhea syndrome coronavirus), betacoronaviruses (SARS-CoV-2), gammacoronaviruses (avian infectious bronchitis virus), and deltacoronaviruses (porcine deltacoronavirus) is showed. The findings demonstrate that GOS may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and other coronavirus outbreaks.

3.
J Med Virol ; 94(8): 3992-3997, 2022 08.
Article in English | MEDLINE | ID: covidwho-1802457

ABSTRACT

The SARS-CoV-2 vaccines have been widely used to build an immunologic barrier in the population against the COVID-19 pandemic. However, a newly emerging Omicron variant, including BA.1, BA.1.1, BA.2, and BA.3 sublineages, largely escaped the neutralization of existing neutralizing antibodies (nAbs), even those elicited by three doses of vaccines. Here, we used the Omicron BA.1 RBD as a fourth dose of vaccine to induce potent Omicron-specific nAbs and evaluated the broadly neutralizing activities against SARS-CoV-2 variants. The BA.1-based vaccine was indeed prone to induce a strain-specific antibody response substantially cross-reactive with BA.2 sublineage, and yet triggered broad neutralization against SARS-CoV-2 variants when it was used in the sequential immunization with WT and other variant vaccines. These results demonstrated that the booster of Omicron RBD vaccine could be a rational strategy to enhance the broadly nAb response.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Virol J ; 19(1): 2, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1608023

ABSTRACT

The current COVID-19 pandemic caused by constantly emerging SARS-CoV-2 variants still poses a threat to public health worldwide. Effective next-generation vaccines and optimized booster vaccination strategies are urgently needed. Here, we sequentially immunized mice with a SARS-CoV-2 wild-type inactivated vaccine and a heterologous mutant RBD vaccine, and then evaluated their neutralizing antibody responses against variants including Beta, Delta, Alpha, Iota, Kappa, and A.23.1. These data showed that a third booster dose of heterologous RBD vaccine especially after two doses of inactivated vaccines significantly enhanced the GMTs of nAbs against all SARS-CoV-2 variants we tested. In addition, the WT and variants all displayed good cross-immunogenicity and might be applied in the design of booster vaccines to induce broadly neutralizing antibodies.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Mice , SARS-CoV-2/immunology
5.
Virulence ; 12(1): 1209-1226, 2021 12.
Article in English | MEDLINE | ID: covidwho-1242086

ABSTRACT

New SARS-CoV-2 mutants have been continuously indentified with enhanced transmission ever since its outbreak in early 2020. As an RNA virus, SARS-CoV-2 has a high mutation rate due to the low fidelity of RNA polymerase. To study the single nucleotide polymorphisms (SNPs) dynamics of SARS-CoV-2, 158 SNPs with high confidence were identified by deep meta-transcriptomic sequencing, and the most common SNP type was C > T. Analyses of intra-host population diversity revealed that intra-host quasispecies' composition varies with time during the early onset of symptoms, which implicates viral evolution during infection. Network analysis of co-occurring SNPs revealed the most abundant non-synonymous SNP 22,638 in the S glycoprotein RBD region and 28,144 in the ORF8 region. Furthermore, SARS-CoV-2 variations differ in an individual's respiratory tissue (nose, throat, BALF, or sputum), suggesting independent compartmentalization of SARS-CoV-2 populations in patients. The positive selection analysis of the SARS-CoV-2 genome uncovered the positive selected amino acid G251V on ORF3a. Alternative allele frequency spectrum (AAFS) of all variants revealed that ORF8 could bear alternate alleles with high frequency. Overall, the results show the quasispecies' profile of SARS-CoV-2 in the respiratory tract in the first two months after the outbreak.


Subject(s)
Phylogeny , Polymorphism, Single Nucleotide , Quasispecies , SARS-CoV-2/classification , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Alleles , COVID-19/virology , Computational Biology , Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/genetics , Female , Gene Frequency , Genome, Viral , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Severity of Illness Index , Young Adult
8.
Structure ; 28(11): 1218-1224.e4, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-872505

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized ß-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.


Subject(s)
Betacoronavirus/ultrastructure , Disinfectants/pharmacology , Propiolactone/pharmacology , Virion/drug effects , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cryoelectron Microscopy , Electron Microscope Tomography , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccines, Inactivated/immunology , Vero Cells , Viral Vaccines/immunology , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL